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Multifrequency oscillations in systerns with a large number of degrees of freedom
were considered in [1, 2], In the present paper we study multifrequency oscilla-
tions of systems of a more specific form; we reduce the problem to the study of
canonical systems of differential equations describing the resonance phenomena,

1, We consider a conservative system with n degrees of freedom, which has a stable
position of equilibrium; in a neighborhood of this position the system performs relatively
small oscillations, The system is acted on by N perturbations, which neither change the
position of equilibrium nor lead out the motion of the system beyond the neighborhood
of this position, We shall regard these perturbations as generalized coordinates (with in-
dex larger than r), which are specified functions of time, These coordinates enter for-
mally into the expressions for the kinetic and potential energies (i, e, we assume that
the conditional system with n 4 N coordinates is a conservative system), We assume
also that owing to a specified internal symmetry in the system, the expressions for the
kinetic and potential energies are symmetwric with respect to all of the »n - & general-
ized coordinates, Then
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We assume that the symmetry of the coefficients in the expressions for II , shown in the
parentheses, holds also for the coefficients in the expression for 7, i.e,

4y = a (1.2)

(js) ... (i)
1 o = af = .

ki) vy ..
This assumption, without restricting the generality of resuits, leads to more simple and
symmetric relationships,

We obtain the differential equations of motion from the equations (1, 1) upon using
the relations (1, 2) and the fact that the g; are known functions of time for i = n - 1,
ve o n N

Let us assumne that all perturbations are harmonic with frequencies p;{j = 1, 2, . . ,N}.
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Then in the equations of motion we set
7 N
qr = 81'EQQ’, E=14,2,...,n, gy = s‘i'ij cos (Pjs - 1‘3’1), j=12,...,N

where & is a small positive parameter, Omitting the primes, we obtain, to within terms
of the third order,

N (1a 3)
2 (@0 + 00,) = 2 (@3, nakPy® €3, nyx) Hy c08 (pt — b)) — eF *,
k=1 k=1
n i=1,2,...,n
1
Fpr= 3 [—2— o (q90," + 0,95°9,) +-— Pagasa ]+
k, j, s==1
n N
2 2 Hofoos (bt — ) [ofi ™ (24,0, — p20,0;+ 0,9 +
Ky j=1s=1
n N
(”“*s)qkq]—-sm(pt— ) fJ,ﬂ-l»s)P qkqj _Z_ Z 2 HH %
k==1J, 8==1

{cos [p; -+ )t —b; — ¥,] [aly ™9 (g, — 2p 20, — pip g,) + it ™9g |+
008 [(p; — p) ¢ —; + ] [aly ™ ™) (g, —2p 20, + pip.g,) +
efp g ] — 20t M pg - [sin ((py o p) t— Wy — ) -

N
S (7 = Pt =y O o ) HHGH (5 —
K, j,s=1

(P2 + P2+ 22+ o — pip — ppy) a9 cos [(p + p; — p)t —

Y — W A0+ [0 — (2 + P PR Py Pip, + PP X
a2 cos [(py + P+ P E— ¥, — ¥ — 1}
Resonance in the system (1, 3) holds when one of the following inequalities is satisfied
(either exactly or approximately):
n N
2 q%k)wi+2 sgk)p;;::av k:1y 21- .
=1 i=1
where @;(i = 1,2, ..., r) are the natural frequencies of the linear part of the system
(1,3),and ¢;,¥, ;" are integers (some of which may, in fact, be zero).
The resonance we consider here arises from the terms of the third degree in the system
(1, 3),1i.e, resonance of the third rank,
We assume now that in the system in question we have m-frequency oscillations with
the frequencies ©; = 0, ... = 0,, m = n. Further,we shall assume that

a;, Mp,f— 5, nek = 0, ke=1,2,...N (1, 4)
We show at the close of our paper that if these relationships are not satisfied, then the
calculations become much more cumbersome, however, qualitatively no new results in
the study of resonance phenomena are obtained, This was shown, in particular, in [3] for
the case of single~-frequency oscillations with a single external perturbation,

2, We seek a solution of the system (1, 3) in the form
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m
9 ::Z LA cos (@t —Q)teg teg, ..., E=12,...2 (21
s=1
n
Z‘, (cik—ms?aik)Lgf’:O Lhs=4,2...,n (2.2)
=1
n n
G _ , . .
2 aikLij)Lg) =0, 2 PP =0,  jks (2,3
i, k=1 i, k=1 '

Here As and g, are slowly varying functions of time, and the gx, . . . are relatively
rapidly varying functions of As and ¢, and the time, which supplement the fundamental
solution, The functions L;® (k, s = 1,2, ...n) are determined from the algebraic sys-
tems (2, 2) and possess the orthogonality property (2, 3).

For the study of multifrequency solutions of system (1, 3) let us generalize a supple-
ment (see [4, 5]) to the existing asymptotic methods in the theory of nonlinear oscilla-
tions [6], We substitute equations (2, 1) into (1, 3), multiply the i th equation by L,
r=1,2,...m,and then add all the equations, Taking (2, 3) into account, we obtain

4, +20,409 — A9 *cos (@ —¢)+ (4,9, —20.4 + 2.4
n&
[ & -
24,9, ) sin (@t — @) + D Lyt + o) = — ’:r‘ F.
T i, K==)
Here
n
m, = 2 aikL(;)Lg) >0
i, k=1

m
F = .2.1./.. Z A;A A, {3§$,3j“) (@;, 0y, — ©,) €05 [(0; + 0 — 0,)t — §; —
£

T

3y 8y u=1
0+ 0,1 + 85 (05, 0, 0, cos [(0; + 0 + 0 )1 — @;— 9, — 9,1} +
N m
%"2 HjAsAu{Zég‘i‘Qﬁ (0, — @, p;yeos [(o, — o, + p)t—
=18, u=1
P By — ;] 85, (0,5 0, — Py €03 [(0, + 0, — Pt — @, ~ @, F
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n n
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A = 3 RO, e = 3 )
i=1 (==

1t follows from the resulting system that resonance of the third rank is possible if for
each o, we can find ©s ®j, Oy, . - -» Ps, Pj» Pus - - -» such that one of the following
equalities is satisfied (exactly or approximately):
to,. = ;0 — 0, O =0 + o, + o,
iwrm msz—muz+pj’ i“07‘ = msx+mua“pjn’ 0, = m84+wu4+pji
imr::mus‘*-pia—pa’ +o, = P]-‘—f-]’st'“(ﬂuqv mr:mu7+pia+psz
F o, =pj,+ Py, Py @, = P;, Pt Py,
The number of possible resonances is bounded, although very large,
Among the first equations of (2, 4) there are the trivial ones, i, e,

mr=mr+0)s~ﬁ)s» s=1,2,...m (2.86)

(2. 5)

Except these equations, the first equations of (2, 5) define the existence of an internal
resonance, In [7]a case of this kind was considered for m-frequency oscillations of the
third rank for a conservative system with r degrees of freedom, We shall assume here
that the system (1, 3) has no internal resonances, i, e, from the first two equations of
(2. 5) only equations of the form (2, 6) are satisfied, and the resonance appears only due
to the external perturbations, For situations in which this condition is violated, it is ne-
cessary to combine our results with those given in [7],

3, We assume now that the frequencies w;(i == 1, 2, ..., n) are all distinct, We then
have the possibility of the following six fundamental cases of resonance,

The first fundamental case is characterized by the fact that in the equations defining
resonance only one frequency is involved and the simplest canonical systems are obtained,
Several subcases are identifiable here,

A, Suppose that p, = 3w, (r =1, 2, .. ., m). Here, as in the similar cases given below,
we assume that there are no other relations leading to satisfaction of Eqgs.(2, 5). Using

the identi
! 1y cos [(pr — 2073t — Py + 2¢;] = cos A, cos (ort — @) — sin A, %

sin (@rt— @7) (Ar = (pr — 39,) t — Py + 39,)
and equating corresponding terms in the system (2, 4) which appear in front of the ex-
pressions cos {w.f — ;) and sin (erf — @7), we find
e = 3 e 1 -
20w, = A9, == g B w0, —e) a2 s G

ne
T
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™m
" 5(ss)
e 2 Err (mr’ @y — ms) ‘47"4 + % Z gg:—s n+s (wr’ Pg _Ps) ArHsz+
§=1 531
A~
8% 8r,ner ((DT, Wpr — Pr) I-IrAr2 cos ;"r} ! Arq)"r - 2(1)1_/1'1_ + 2A.rcp.r =
e 1 -

E:—Szgiﬂnw(wr,m ’ pr)HrArzsin;”r’ r=h2.,m

where the prime on the summation sign means that the term corresponding to s == r s
omitted,

From Eqs, (3,1) we obtain, upon taking into account the expression for A, to within
terms of order &, the following autonomous system

dA,/edt = — H,°A,%sin Ay, r=4,2,...,m (3.2)
By o om oH o +3H %4 A4 GH. S 42— 3HoA os)
t'“mr r r Frriy rzasrs_' r “1p CO8 A,
g==1
2m°Ho_~pr“3mr 3H © o 2 TF 1 =(rr) H
T r —"‘""“‘é'—"—+ r ZB"H.;’ Hfzmgrn-{»r(mrmr’_l.)r) r
s=1 ror
T —— )
H" Yor ‘16mr0)1_ Err (mr’ ms’—ms)i H,-o s,.::"—wggﬁ:) ((x)r, ps’—“ps)

The system (3, 2) provides a complete representation of all the motions for the resonance
case in question, We refer to such systems as canonical systems,

After equating the remaining terms in (2, 4), we obtain m equations for gy, (k= 1,
2, ... n). The remaining n — mequations are obtained from the system (1, 3) following
similar procedure, In accord with the method of Krylov-Bogoliubov, these functions are
to be obtained from a second approximation, the equations which we shall not consider
here,

B, Suppose that w,= 3p,(r=1, 2, ..., m). Using the method indicated above, we
obtain the canonical system
dAJedt = H,® sin Ay, r=14,2,...,. m (3. 3)
N o
dh_Jedt = 2m °H ° HeAr—20° S Az 27 e
rle’“mr r G4, r d’er‘AGGr
Cwml
eHo___mMBP’r Ho H .;m______}________ {n4r, ) H?
2m’r ro 2! B = 16m o, 8y, mar (P Py P H
s=1

Ar = (@ — 3pe}t — @p + 3y
To this subcase we can add the following:
Wy =2 2p‘27’—~1 t Popy O = P3r—g + Pypy tpsy r=1,2,...,m
Here again we obtain the canonical system (3, 3) with certain changes in the notation,

4, The second fundamental case is defined by relationships involving two frequen-
cies ©;. Here also we may identify several subcases,
A.'The equations
Wopy 205, — P,y By — Wy b @y, Hp, T=1,2,...,m
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are satisfied, It is clear that we now have 2m~frequency oscillations (2m = n). We ob-

tain -
dA,._. a4

3(2;; LI H° A, sink,, e;’“ = 2H °A, Azr (Sin A, (4.1)

e ™ H %4,
A9qr_y ot 2 s » -
edr . Yer-1, ar-1Agry 12 2 R A Z B ara H3? — cos k.,
s=1 s=1 2r—1
2 m .
W w2 ST * H2—2H A A
Py = Oy grdyy +2 Z} o or A 2 By onf 2 — 2H °Ay,  cOSR,
§mmy §==1

Kr = (2m2r iV Oy, )t~ 29, + ¥, + Pory
e e BT AT (mgr’ @y — P

-1
H? =Amo, H_° =158 YH Mgy yOgpy) 71 (g0,

g™ @, p,, — p)

( S —
B s )(mk, w,) . B —
Ogp = — 16”‘1:(”1;”"5 ks sk B84m0,
The first two of Eqgs. (4,1) have the integral
(4.2)

o¥ A o __ 2
A2T—1 + - ®
where xe is a constant of integration, Taking into account the expression for A, and the
integral (4,2), we obtain the canonical system
r=1,2,..., m

(4. 3)

dA
2r—1 o ot
= — H°(w— 2H,,_)sink,

edt
dh . am, H? .
v ° ° o U 'S v o
edt 2m ° 44ty g g gy s 2 2J g, A" — A; (x* — 64,, ;) cosh,
s=1 -1

™m
L. 9O = P — Wypy —
2m 0 = P + 2 8, or By pHE+2 (“27- ar-1 " %oy, ar) W2
s=1

— 80y, 1 or T By or

-3
4agp 1 9r-1 = Ygr-1,9r—1
— < fad
ssE2r—4,2r, a Coa

° - s
Cop = c‘s,zr—l Zas’ oy

The double prime on the summation sign here means that the terms with the subscripts

2r —1 and 2r are omitted,
B. The equalities
@y g =

are satisfied, As we did for the subcase A ,we obtain the canonical system

Zp — Dy, Wy, = 2P — Wy _y r=4,2,...,m

(4. 4)

’1421»1
r=4,2,...,m

o? 1, .
=— H °(4,,_; —»)"sin}k,,

edit
H°{—n+ 24
(%t 2’“1) cosh,

dh .
8(1: = Zmrﬁ’ +4"‘2r—1 271 2r—- +2 2 a, °A°
s=1 A (At

2p, — By — Wy y -
- — + Z (Bs, gry Bs, o) H 2~ (agr, o 2012," o) %

2m,r° —
&

s$=1
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<
r 16 Sor-1,2r

1 - 1
H © e g, THT) ( Py P, — "’zr) Hr2 ( mzrmsrmzr-lwar-l) i
A= 2P, — 0y s — W)t —2p, + Pypy + Py

o
48y grq = Ogr-10r-y T 4%p,0r1 T Yor o
o o
By =0y gy T O gy SF2r—1,2r, 2, Fa,
Here x is a constant of integration,
With a slight change in notation, we can bring the subcases defined by the equalities
iwzrz 2m2r—1j:pr’ (1)2,.__1z‘““(02.’._1~i—(1)2r ¢pr7 r=13 2,- Lo m

either to the subcase A or to the subcase B,

The subcases A and B are essentially different, The integral (4,2) is typical for an
internal resonance, It proves to be the case that external perturbations produce a speci-
fic type of resonance having certain features in common with an internal resonance,

C, The equalities

Ogry = O+ Pop g — Py O = Oy + Py — Py r=1,2, .. am

are satisfied, The canonical system for this subcase has the form

o o -
AA,, Jfedt = — H °(#*— A, )lsin A, r=42,...,m (4. 5)
2m o?
A ° ° o? ” ° H?>° ('KB b ZAW_I)
'—dgr" = 2m‘r + 4“2r«1,2r—1‘42r—1 +2 2 Cor A~ " : T 08 k,.
¢ =1 Agry (2 — Agp )

m
P Q) ——
m o = Do + Pory or—1 — Por - 2 (B, 201 — By, o) H 2+ (g, g0y — Oy ) %2

-
€ §=1

i - - 1
HS = T gé'r'?f.f +ar-1) (@gps Poyyr — Poyr = Pop) Hpp Hop_y (0911000 119y ) 7

A'T = ((‘)21- - P27‘—1 - 0)27‘—-1 - Pgr) t— q)zr - \p2r—1 + q)27‘—1 + ‘p27'
s 2r—1,2r

o a

e o __ .
489y ar1 = Ogr-1, arer — gpogor T Tor om Bgr = s 2rm1 7 %a, 00
Other subcases are also possible ; however, they lead to the canonical systems already

considered,
5, In the third fundamental case three characteristic frequencies are involved in the

relationship defining resonance, We identify several subcases,
A, The equalities ~

1 Ogr g = Ogr_y + O — Ppy Ogpy = Oy — Oy + Py

Q)m.z (Osr_2—(03,.,,1+}’,.a ?':1,2,...,?)'1

are satisfied, It is clear that here we have 3m-frequency oscillations (3m = n). We

now obtain the system .

ClA - o .
.__e_;_i = — H Ay, _yAg°sink, (5.1)
dA;r—l o 4° A °gi ;\' dAS?‘O _ ZH OAo Aa . x
edt 2H Ay g Ay" Sin D edt 2y Agr-ggr S0 A,
3m m 0A° °
dq)3 -2 o? ‘ H r A3r-lA3r
ed: = a3""2’37’“3A37‘“2 +2 Z as,srmzAsoz + 2 Bs,sr-a HE2— Y cos A

$=1 s=1 3r-2
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3m

a9 °
ar-1 ° °
—ar - %ar-1, sr-14 3r—1 +2 2 %y gr- lA + 2 Bs ar1H ——mcosx
=1 s=1 Agry g
A, o , HoA A
- gr—a“tgr—1
edt g grdgn” ' +-2 2 R 2 By anH 2 — “‘L—;ln_"—_" cosh,
=1 § ==l .3r
1
8 e o S(aM M) -
H® = qm g5 g gy (g g, Ogpy — P H (O, Mgy 0,y Mgy 10g e, ) e
A, = (0g_q + O, = Pyp— agrog)t — Py_y — Py + P o N

The first three of Eqs, (5.1) have the integrals
o? o ot °
AST-—2 + Aar—l + Agro’ = uz, 2A37‘—2 + A3:‘-i = ‘Klz (50 2)

Here »* and %,? are constants of integration, Taking into account the expressions for A,
and the integrals (5,2), we obtain the canonical system

o

dA

8;;’2 =—H.° (12 — 2A; Vls (w2 — w12 — 2A3r 2) Ve gin Ao, r=14,2,...,m {5.3)
d)v 3m
° 2
sd =2m/° +4a3r_2,3;._2 33,_2 + 2 Z a, A" —
8§ =1
o2 ot
—-31: [i® (%2 — w2) — &Ay, _, (62 — ni?) 124, ,} X
-
(a2 — 245,_)" (o2 — 2 — 245, )M cosh,

m
Doy Qg — P — Ogy_
2mr° o et = - T2+ 2 (B's'.st‘aé"' Bs, -1 Bs,3r) Ha;2 +

€ o}
— _ 2 — — 2
(205, y greg = Ugp_g, grey — 2gpaq,30) %8 (204, grg — 20y gr_3 — gy gp) %

E-3
Agy g gr-g = g gr_g — B%p_g yrq T+ gy, groy T 60y ar — 40y gp o T 20y op

o .. —_ —_ — —_ o o
By,° =8y gpg — Uy gray — Uy gp ssk3r—2, 3r—1, 3r, a 0 Fa,

Here the triple prime on the summation sign means that the terms with the subscripts
3r~ 2, 3r — 1 and 3r are omitted, Certainly, we can eliminate from the integrals
(5.2) instead of the amplitudes A;,_, and As°,the amplitudes d,,_, and As:’ or the
amplitudes A3,._2 and 143,,_,L However, no essential difference in the resulting canonical
systems is obtained,
B, The equalities
Ogp = Pp = Ogpg — Ogr gy Ogp ) R Pp— Qgp g = Ogpy Oy 9= P~ Ogrge
r=12,...,m

are satisfied, Similarly to subcase A, we obtain here the canonical system

o

ar-g .
—g = (A — ) (A p—®Eu)sink, r=1,2,...,m (54)
) :
sd: =2m° —day o g g Agy o — 2 Z‘z cAz?
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e
T ot o? o2 s
) {Ml (% ——’Kl) — ZKA37._2 W}-- 3/137,‘2] (A37‘—2 —_ “1)_‘12 X

4 3r-2

o? =y
(Agp_y — %+ u1)""2cos b,

2m

o _ Dgrog T Oy y + 0 —
.
€

m
P
- Z (Bs, 3r-1 + Bs, 3r-2 -+ Bs,ar) Hsz -+

==l
(g} (20‘3r~1,'3r—2 + Ogroy, gr—1 2a3r-1, g}
06— 21} QOlgy gy + 2054 0 Ay o)

b= {04+ 0y + 05— p )t — gy — Pgr1 — Pgr + ¥,

4a, =g + o

372,372 = %ar-9, ar—o T %gr_q gr-1 T Vg g T 8hgp g gp g AU o T 40, arg

L g—
a, ”ds,ar—2+u&,3r—1+as,3r‘ s==3r—2, 3r—1,3r

where x and %, are constants of integration,

Other subcases are also possible ; however, for certain differences in notation, they all
lead to the canonical systems (5, 3) and (5, 4),

The three fundamental cases we have considered are characterized by separate isolated
groups of equations, We note, in this regard, that even in the canonical systems the equa-
tions are grouped in a certain way, When m = {1, all the canonical systems may be
integrated, The corresponding integrals have the form

mPAy° - e At — AP cos Ay = a2 {5, 3)
m A — Y Ayt - Aeos Ay = s

M4y — ap® A4 — H2A,° (%2 — 2.41%) cos Ay = a3

my® 412 4y A1 — H10AL (Ay'2 — %)7*cos by = caa

my® 4,5 e lequm‘ — II].OAl“ (’)(‘2' —_ Al‘m)‘/’ cos8 )»1 == C4,5

mO A2 - a0 A — HP 410 (%2 — 2‘4102)‘/2 (M2~ %32 — 2.4,%2)2cos Ay = ¢5.3

MO AL — a0 A - H 0 A0 (A% — )2 (A" — % - %) cos Ay = 054

The number of the canonical system is indicated here by the subscript of the constant
of integration, Further, we can express 4,°% in terms of elliptic functions of the time ez.
The study of all the canonical systems for m = 1 can be carried out on the phase plane,
where 4,° and }, are polar coordinates, The phase rajectories are determined by the
expressions (5, 5), The phase trajectory plots give a complete representation for all pos-
sible motions in the systems,

6, We merely note the following three fundamental cases without going into a de-
tailed discussion, They lead to substantially more complex canonical systems, systems
which are not integrable for m = 1. The study of these systems can be carried out for
certain particular cases,

The fourth fundamental case is defined by the equalities

@ = 3py, Pry=30, r=1,2,...,m
The canonical system for this case consists of 3m-equations with m unknown amplitudes

A, and 2m variables };. The situation here may be linked to combining the subcases A
and B of the first fundamental case, The frequencies o; and p; form a sequence inwhich
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any two successive terms are connected by a relationship typical for the first fundamen-
tal case,

In the fifth fundamental case the frequencies w;(i = 1,2, ...,2m) and p;j{(/ = 1,2,

comyor(j=1,2,...,2m) form a sequence in which any three (or four) successive
terms are connected by a relationship typical for the second fundamental case, The can-
onical systems for this. case consist of 5m — 2 (or 6m — 3) equations with 2m unknown
amplitudes 4; and 3m — 2 (or 4m — 3) variables }; (2m-frequency oscillations),

In the sixth fundamental case the frequencies w;(i=1,2,...3m) and p;(j =1,
2, ..., m),form a sequence in which any four successive terms are connected by a re-
lationship typical for the third fundamental case, The canorical systems in this case
consist of 7m — 3 equations with 3, unknown amplitudes 4, and 4m — 3 variables
%; ( 3m -frequency oscillations),

The consideration of these fundamental resonance cases does not exhaust all the cases
possible, They merely indicate the main directions in which to proceed in studying pos-
sible types of resonances,

7, We now consider a case in which the equalities (1, 4) are not satisfied, Thus we
seek a solution of the system (1, 4), not in the form (2, 1) but in the form

N m
gy = 2 My cos{pt—1b) + Z L%)A8 cos {ot — @) + (7.1)
=1 s==1
LV S P E=1,2,...,m
n
n 2 L(ij)H 5 (ai,rwsp 3 — G, n+.s)
M(’:) — 2 L(ka) i=1 , o r,

2 2
j=1 m’j (mj - ps)
However, we can write the solution (7,1) as follows:

m--N
=2 LA cos (0t — @)+ ey -+ e+ . .. (7.2)
§=1

ng) = ng‘m), A =1, o, =p _p O, =V, , for s>m

It is now clear that the substitution of (7, 2) into the system (1, 3), and the subsequent
transformations, again lead to the system (2, 4) in which the coefficients in the expres-
sions for the £ will be more complex, This yields no new qualitative results in com-
parison with the results obtained earlier,
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We use a Liapunov function with a derivative of constant signs to analyze the
problem of asymptotic stability and of instability of an unperturbed motion, We
generalize two theorems due to Matrosov [1] for a system of equations of pertur-
bed motion, the right-hand sides of which depend indefinitely on time, The re-
sults obtained are also formulated with respect to a part of the variables,

1, Let the following system of equations of perturbed motion be given:
X=X (¢, x) (X (¢, 0) = 0) (1, 1)
X= (2,000 2) E BY, x| = (@2 + ...+ 29"

where the vector function X (¢, x) is defined and continuous on the set
P={tx:1=0|xj < H) (0 < H = o0)

while the solutions x = x (#; #,, X,) are defined for 1= 1t, provided that the initial va-
lues Xo = X (tg; %o, X,) are sufficiently small in the norm and £, = 0.let x, ¥y & A" and

M (C R™. We introduce the following notation:
n

=V =D oy, ey =|x—yl e M)=inf{p(x,y):yc M}
im=1
Definition 1,1, [1], Let M C R™ and the function ¢ (¢, x) be defined and

continuous on the set
I'={(t, x):t=0, [x|S H} (0<H = const < H)

We shall consider that U (¢, x) is definitely nonzero ( U (¢, x) &= 0 ) in the set {({, x) :
¢ xye1, s M), if forany a;, o, (0 < a, < a, << H') positive numbers f;{c;,
ay) < ay and By, «,) exist such that

vt pni=p, fo GLxyel’, og=slx=Eq
p (X, M) _—<: ﬁl



