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Multifrequency oscillations in systems with a large number of degrees of freedom 
were considered in [ 1, 21. In the present paper we study multifrequency oscilla- 
tions of systems of a more specific form ; we reduce the problem to the study of 

canonical systems of differential equations describing the resonance phenomena. 

1, We consider a conservative system with n degrees of freedom, which has a stable 
position of eq~libri~ ; in a neighborho~ of this position the system performs relatively 
small oscillations. The system is acted on by N perturbations, which neither change the 
position of equilibrium nor lead out the motion of the system beyond the neighborhood 

of this position. We shall regard these perturbations as generalized coordinates (with in- 
dex larger than n), which are specified functions of time. These coordinates enter for- 

mally into the expressions for the kinetic and potential energies (i.e. we assume that 
the conditional system with n + N coordinates is a conservative system). We assume 
also that owing to a specified internal symmetry in the system. the expressions for the 

kinetic and potential energies are symmetric with respect to all of the n -f N general- 

ized coordinates. Then 

We assume that the symmetry of the coefficients in the expressions for II , shown in the 
parentheses, holds also for the coefficients in the expression for T, i. e. 

aik=” ., 
kz %c 

(js) = &g’ 21= . . . ) . . . O.2) 

This assumption, without restricting the generality of results, leads to more simple and 

symmetric relationships. 
We obtain the differential equations of motion from the equations (1.1) upon using 

the relations (1.2) and the fact that the qi are known functions of time for i = n f 1, 

.- .,n-f-N.. 

Let us assume that all perturbations are harmonic with frequencies p# = 1, 2, . . ,N). 
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Then in the equaticxi$ of motion we set 

Qk = JSgs8, k = 1, 2, s . . 9 R, * qn+j =ir Ex’2Hj COS (pjt - “r?i’,* f = 1,2, * l * 9 N 

where 8 is a small positive parameter. Omitting the primes, we obtain. to within terms 
of the third order, 

i: @@,” + c&Q = g 

0.3) 

( 
k=x 

5, n*kPk2 - ci, n+kl Hk C&3 tPkt - *& - @;*9 
k=l 

n 
i=1,2,...,n 

k, j,s=l 

Resonance in the system (1.3) holds when one of the following inequalities is satisfied 

(either exactly OT a~~oximate~y) : 

i==l j=l 

where oi(i = 1, 2, . . . , n) are the natural frequencies of the linear part of the system 

(1,3), and gi,ch’) ,1 , slcKJ are integers (some of which may, in fact, be zero). 
The resonance we consider here arises from the terms of the third degree in the system 

(1.3). i. e. resonance of the third rank, 
We assume now that in the system in question we have m-frequency oscillationswith 

the frequencies o1 5 w2 . . . s o,, m s n. Further,we shall assume that 

‘i, ntkpk 
a-_ ci ntk =-;. , 0% k1=1,2,...N 0.4) 

We show at the close of our paper that if these relationships are not satisfied, then the 
calculations become much more cumbersome, however. qualitatively no new results in 
the study of resonance phenomena are obtained. This was shown, in particular, in [3] for 

the case of single-frequency oscillations with a single external perturbation. 

2. We seek a solution of the system (1.3) in the form 
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qk = 2 LgfA8 cos fw,t -iP,)+eqk,+dqlrz+*. ., &=1,2 f... n c&3> 
.?=I 

n 

2 (cik - tis2aik) Lp’ i= 0 i, s =: 1, 2, . . . , 78 

k=l 
(2.2) 

Here AS. and cps are slowly varying functions of time, and the qklr . . . are relatively 

rapidly varying functions of AJ and ‘ps and the time, which supplement the fundamental 
solution, The functions Lk@) (k, s = 1,2, . . . n) are determined from the algebraic sys- 
tems (2.2) and possess the ~~ogo~~i~ property (2,3). 

For the study of rnul~~equen~ solutions of system (1.3) let us genera&x a supple- 

ment (see [4, 51) to the existing asymptotic methods in the theory of nonlinear oscilla- 

tions [6]. We substitute equations (2.1) into (1.3), multiply the i th equation by Li(') , 

r= 1,2,. . .m , and then add all the equations. Taking (2.3) into account, we obtain 

(AT + 2+/+~,’ - +P,‘~) ~0s (@,t - cp,) + (“,‘P~” - 2~94~’ $ (2.4) 

2Ar’cp,‘) sin (CO+ - qp,) + + i Lp fairgrl” + cikqpl) = - E_ F r 
r 4, k=l mr 

Here 
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i, k=l 

i-1 i==X 

It follows from the resulting system that resonance of the third rank is possible if for 
each o, we can find Q, mj, Q, . . ., pa, pj, pur . . ., such that one of the following 

equalities is satisfied (exactly or approximately): 
f”,=lcuj+w co~Y s or = aj, + as1 f- mu, 

+o,==o - (Ou, + Pjl 
(2.5) 

*~~=~~8+pja-P~* 

+ Or = q* -t- aus - Pj,, 0, = 0,. + a,, + Pj, 

z!I OT = Pj, -t- Ps, - Q& w, - Ou, + Pj, + Ps* 

* or = Pj, -I” PJt -- Put or = Pj, f P$, + PU* 

The number of possible resonances is bounded, although very large, 
Among the first equations of (2.4) there are the trivial ones, i. e. 

oj” = or + % - OS? s= 4,2,...m (2.6) 

Except these equations, the first equations of (2.5) define the existence of an internal 
resonance. In fr] a case of this kind was considered for m-frequency oscillations of the 

third rank for a conservative system with n degrees of freedom. We shall assume here 
that the system (1.3) has no internal resonances, i, e. from the first two equations of 

(2.5) only equations of the form (2.6) are satisfied, and the resonance appears only due 

to the external perturbations. For situations in which this condition is violated, it is ne- 
cessary to combine our results with those given in u]. 

3. We assume now that the frequencies oi(i = 1, 2, . . ., n) are all distinct. We then 
have the possibility of the following six fundamental cases of resonance, 

The first fundamental case is ~haracteri~d by the fact that in the equations defining 
resonance only one frequency is involved and the simplest canonical systems are obtained. 
Several subcases are identifiable here. 

A. Suppose that pr z 30, (r = 1, 2, . . ., m). Here, as in the similar cases given below, 

we assume that there are no other relations leading to satisfaction of Eqs.(2.5). Using 
the identity 

Coa I(P, - 2%)t - *r + 2@1= COs &CO3 (Ort - cpr) - sin h, x 

sin (w+ CP~) 09 = (pr - 39,) t - % -f- 3~~) 

and equating corresponding terms in the .svstem (2.4) which appear in front of the ex- 

pressions cos (o,t - tp,) and sin (w$ - %) , we find 

(3. I) 
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I -(IT) 
84 g,,,+, bT’ wry - P,) H,J(.~ ~0s A, , +P”, - 29~4’~ + 2A’Tg,‘r = 
e 1 -- 

,n P 
84 i!s’r,., tWt’ Or? - p,) HpA,2 sin A,., r==1,2,. .., m 

where the @me on the summation sign means that the term corresponding to .T = r is 
omitted. 

From Eqs. (3.1) we obtain, upon taking into account the expression for h, to within 
terms of order a, the following autonomo~ system 

dAdsdt = - HToArZ sin h,, t = 1, 2, . . .) m (3.2) 

The system (3.2) provides a complete representation of all the motions for the resonance 
case in question. We refer to such systems as canonical systems. 

After equating the remaining terms in (2.4). we obtain m equations for pk+r (k = 1, 
2 ,.*. n). The remaining n - meqwtiom are obtained from the system (1.3) following 
similar pocedure, In accord with the method of Krylov-Bogoliubov, these functions are 
to be obtained from a second approximation, the equations which we shall not consider 
here. 

B. Suppose that 0,-z 3P, (r = 1, 2, . . . , m). Using the method indicated above, we 
obtain the canonical system 

dA&dt = H,a sin h,., r-4,2,..., m (3.3) 

To this subcase we can add the following : 

wr 25 2Pp_, -f- Psrl 0, =: PST_2 lir p3r_I & psr, r = 1, 2, . . . , m 

Here again we obtain the canonical system (3.3) with certain changes in the notation. 

4. The second fundamentaf case is defined by relationships involving two frequen- 
cies oi- Here also we may identify several subcases. 

A.-The equations 
0 sr_r= 20, - Pj-7 02r z - 6+ + q,l i- pr, r = 1, 2, _ . . , m 
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are satisfied. It is clear that we now have 2m-frequency oscillations (2m 5 n). We ob- 

The first two of Eqs. (4.1) have the integral 

ZA;;_, + A,,” = x2 (4.2) 

where x2 is a constant of integration. Taking into account the expression for hr and the 
integral (4.2), we obtain the canonical system 

(4.3) 

2mTo = 
202,-Pp,--w - iv 1 -+ 

e 
i (P,,,,--2P,,,_,)*~+2 (~zr,zr_1--012r;zr)xa 
8=1 

G,l,2r-l= ~2r-1,2r-f--%r-l,2r +%r,2r 

asro = a,,,,,- 2a,,,,, s #= 2r - 1, 2r, as,“# arSo 

The double prime on the summation sign here means that the terms with the subscripts 
2r - 1 and 2r are omitted. 

B. The equalities 
0 w-1 z22pr--~~~, azrz 2pr-ozr_i r= 1,2,. . . , m 

are satisfied. As we did for the subcase A , we obtain the canonical system 

d*4;,, 
_---.__ = - flpo (A~~._, - Xp sin kr, edt r=1,2,...,m (4.4) 

2m o = 2pr-- @2r- @2r-I 
7 

e + 2 fk,2r-1 -f- &,,A ff,Z- @zr,zr + 2@2,,2r-3 x 
.S=l 
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%A Hr2 (m2r%rm%--l@zr-l )‘I1 

q. = mr - @Zr-l - @a?.) 1 - 29, + (P.&r_1 + c&. 

4ai~-l, w-1 = a~r-~, zr-1 f- 4a2r, zr-i + ‘zr, 2r 

a O==a 
Sf 8, w-1 +as,zry s#2r--1,2r, asro#arso 

Here 1c is a constant of integration, 

With a Slight Change in notation, we can bring the subcases defined by the equalities 

f@~7~2$r-lfPr~ f$r_l~-W2T_lf~9rTP,, r=1,2,...m 

either to the subcase A or to the subcase 3. 

The subcases A and B are essentially different. The integral (4.2) is typical for an 
internal resonance, It proves to be the case that external perturbations produce a speci- 

fic type of resonance having certain features in common with an internal resonance. 
C, The equalities 

wzr-1 = 02r + P2r_1- P2T’ %r = m2r-1 +P2rwP2+17 r’=f,2,...,m 

are satisfied. The canonical system for this subcase has the form 

dA~,_,ledt =: - H,” (x= - Ai:_I)Ya sin k,, r = 1 ,2, . . . , m 
(4.3) 

dh 
2m 

T 
H "(x2- 244 

edt 
- 2mr0 + 4a~,._,,2,1~~~_l + 2 2” agtoA8” - 2 -- 

‘It 
co9 h, 

.?=l A;r-l(+ - A;:_,, 

mro = %r+ pw-1- ow-x-pw f $j (P,,ar_r- Pg,2p) H," -f-t2aw,2,1-a2,,2t)~2 

s=1 

H," = &i~$y2rkJb_r. P2r-1’- Ph - Psr)H2?.%--1 (~2r"2r~2r-lm2r-lf'1 

kT = (O2r + P2r-1- 02r-l - P2r) t - 'P2r- \cl2r-l+ (P2r-1 + $2, 

4ai,_i, sr_i = ~s,~, St-i - 4esr+- + azp, w7 aSPD = a,, 2r-1 - a,, 2r? s + 2r - k 2r 

Other subcases are also possible ; however, they lead to the canonical systems already 

considered. 

5. In the third fundamental case three characteristic frequencies are involved in the 
relationship defining resonance. We identify several subcases. 

A. The equalities 
@SF2 = @3r-1 + @3$. - P,, aQr_l= (+_2-- w37. + P,t 

03r= @m-2- %r-1 + P,* r=1,2,...,m 

are satisfied. It is clear that here we have 3m-frequency oscillations (3772 5 n). We 

now obtain the system 
&k-z __-- II; - ~,~A~,._#~,.‘sin h,. (5.1) 

edt 

d&-l dA,” 

edt 
= 2HTQA;,A3,” sin I, 7 - = 2R,“A~,_~A~,_l sin X, 

edt 

- = u3,.-_2,3~-_BA;;__$ + 2 ~as,+2Asoe + 5 Ps,sr-aHs2 - 
da, 3r-2 HroA;lr-1A3ro 

edt /f co9 lr 
S=l s=y, W-2 
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3r-2m3r-2°3r-lm3r-1 3r 3r 0 m )+ 

lr = b-+1 -+ oQr - P, - %4 t- %,T-1- (P3r + q7 + 937.4 

The first three of Eqs. (5.1) have the integrals 

hAi;_, -f- A;;_, f As/ = ~2, 2A;_% + A;;_, = x12 (5.2) 

Here x2 and x,2 are constants of integration. Taking into account the expressions for A,. 
and the integrals (5.2), we obtain the canonical system 

‘g?Lz 
edt 

= _ HTO (~~2 - 2A;:_,)‘/s (~2 - $2 - 2A;:_,)‘tz sin hr, r = 1, 2, . . . , m (5.3) 

NrO 
T--- [x12 (x2 - x12) - 4A;;_, (~2 - x12) -I- 12A;_,} x 

3r-2 

h2- 2-4;:_2)- ( 'I* x2 - x12 - 24-a) -f’l co9 h, 

2rrz o = 
W3r-1-t. @3r- Pr- 03r-2 

r E 
+ 5 @s,3*-4 - Ps, 3r-1- P&34 Ha2 f 

a=1 

(2u3r-l, 3r4 - 'gr_1, 3r-1. - 2u3r-l,3r) '12 f f2'3r,3r-2 - 2d3r,3r-1-a3r,w) x2 

4uir-2,3r-2 = a3~-2, 3~2~ 6u3r-2,3r-l f2%-t,3r-1 f6%r-l,3r- 4a3r,3r-2 +2u3r,w 

a *=a 
97 s. 3r-2 --~s,3r*i , - % 3r' s + 3r - 2, 3r - 1, 3r, agy* #u,,&” 

Here the triple prime on the summation sign means that the terms with the subscripts 
3r - 2, 3r - 1 and 3r are omitted. Certainly, we can eliminate from the integrals 

(5.2) instead of the amplitudes Alr_l and As?, the amplitudes A&z and Asr* or the 
amplitudes A& and Air-r. However, no essential difference in the resulting canonical 
systems is obtained. 

3. The equalities 

O3F = p, - "sr-2- 03r-19 @3r-1 = P, - 03r_3‘- @ytr' a*_*= P,-- ~37.4% 

r=l,2,...,m 

are satisfied. Similarly to subcase A, we obtain here the canonical system 

d4,2 
-=: 

edt H o (A+_ - xl)“* (‘8_ 7 3r 2 3r 2 - ?c + ~1)"~ sin I.,, r=l,2,...,m (5.4) 
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Hr” 
-T----- 

A 
[Xl (x-x1)- zx‘d;;_, -+ 3&l Pq:_, - XI)+ x 

w-2 

(&, - x + xp cos h, 

2mrQ = %r-2+ @3p1i- Q$r - P, 

e - $ (Ps,3r-l+Ps,3r-2+.Ps,3r)Hs2 i- 

S=Zl 

Xd2~3r_1,-3r_2 + ~Si--l,Sr-l+ 2%1,3r) + 

o-x1) (2a3,,3r_2 f 253T_1,3r + a,,,,) 

hr = (@3T-2 + ~3r-1f w3r - P,) t - 9)3r_2 - fpQj-_l- fp3y + 11, 

a'==~ 
SC .S,37-2 + %+3r-1 + %,3rr s=+3r-2, 3r-1,3r 

where x and x1 are constants of integration. 
Other subcases are also possible ; however, for certain differences in notation, they all 

lead to the canonical systems (5.3) and (5.4). 
The three fundamental cases we have considered are characterized by separate isolated 

groups of equations. We note, in this regard, that even in the canonical systems the equa- 

tions are grouped in a certain way. When m = 1 , all the canonical systems may be 

integrated, The corresponding integrals have the form 

The number of the canonical system is indicated here by the subscript of the constant 

of integration, Further, we can express A ,02 in terms of elliptic functions of the time et. 

The study of all the canonical systems for m = 1 can be carried out on the phase plane, 
where AID and h, are polar coordinates. The phase trajectories are determined by the 

expressions (5.5). The phase trajectory plots give a complete representation for ail pos- 

sible motions in the systems. 

6. We merely note the following three fundamental cases without going into a de- 
tailed discussion. They lead to substantially more complex canonical systems, systems 
which are not integrable for m = 1. The study of these systems can be carried out for 

certain particular cases. 
The fourth fundamental case is defined by the equalities 

0, C= 3P,, pr+1 - - 3% 2-z I,2,...,m 

The canonical system for this case consists of Snz-equations with m unknown amplitudes 
A, and 2m variables li. The situation here may be linked to ~mbining the subcases A 
and B of the first fundamental case. The frequencies ui and pj form a sequence in which 
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any two successive terms are connected by a relationship typical for the first fundamen- 
tal case. 

in the fifth fundamental case the frequencies wi(i = 1, 2, . . ., 2m) and Pj (i = 1,2, 
. . ., m) or ( f = 1, 2, . . ., 2m) form a sequence in which any three (or four) successive 

terms are connected bv a relationship typical for the second fundamental case. The can- 
onical systems for this. case consist of 5m - 2 (or 6m - 3) equations with 2m unknown 

amplitudes Ai and 3m - 2 (or 4m - 3) variables hi @m-frequency oscillations). 
In the sixth fundamental case the frequencies wi(i = 1, 2, . . . 3m) and Pjfi = 1, 

2 f * I m) , form a sequence in which any four successive terms are connected by a re- 

l~~o~hip typical for the third f~damen~l case. The canonical systems in this case 

consist of 7m - 3 equations with 3m unknown amplitudes A, and 4m - 3 variables 

L, ( 3m -frequency oscillations), 

The consideration of these fundamental resonance cases does not exhaust all the cases 
possible. They merely indicate the main directions in which to proceed in studying pos- 

sible types of resonances. 

7. We now consider a case in which the equalities (1.4) are not satisfied. Thus we 
seek a solution of the system (1.4). not in the form (2.1) but in the form 

(7.1) 

However, we can write the solution (7.1) as follows : 

W-N 

gk = 2 $$+A, a~.s (cost - cp,) + cqkl -i_ @gkz + . . . 

S==l 

(7.2) 

f;$’ = M$“‘, As = 1, as = pa-m, 9 s = qs_, for s > m 

It is now clear that the substimtion of (7,2) into the system (1.3), and the subsequent 

transformations, again lead to the system (2.4) in which the coefficients in the expres- 
sions for the Fr will be more complex. This yields no new qualitative results in wm- 
parison with the results obtained earlier. 
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We use a Liapunov function with a derivative of constant signs to analyze the 
problem of asymptotic stability and of instability of an unperturbed motion, We 

generalize two theorems due to Matrosov Cl] for a system of equations of pertur- 
bed motion, the right-hand sides of which depend indefinitely on time, The re- 
sults obtained are also formulated with respect to a part of the variables. 

1, Let the following system of equations of perturbed motion be given: 

x’ = x (t, x) (X (t, 0) = 0) 

x = (x1, . . ., xn) E Rn, I( x 11 = (x12 + . . . + z,Z)“’ 

where the vector function X (t, x) is defined and continuous on the set 

(I. I) 

I = {(& x1 : t 2 0, II x II < N) (0 < H 5 4 

while the solutions x = x (t; t,, x0) are defined for t z t, provided that the initial va- 

lues x0 = x &I); to, xuf are sufficiently small in the norm and to Z- 0 p Let x, y E R* and 
M c R”. We introduce the following notation : 

(% Y) = 5 “iYi? P(x,Y)=Ilx---I/, P(x, M)=iufIP(x,y):y&M} 
i===l 

Definition 1.1, [ 11, Let M c Rn and the function u (t, x) be defined and 

continuous on the set 
I’ = {(t, X) : t 2 0, I/ X 11 5 N’) (0 < H’ = const < H) 

We shall consider that U (t, x) is definitely nor&zero ( u (t, x) # 0 ) in the set {(t, x) : 
(t, x) E r’, x E Ml, if for any a,, czz (0 < a, < CT* < H’) positive numbers f3i(rx1, 
az) < o1 and Bz(e+, a,) exist such that 


